A New Actinomycin-type Chromopeptide from Streptomyces sp. HKI-0155

Sir:

The actinomycins form a family of more than 45 related heteromeric peptide antibiotics containing the same phenoxazinone chromophore but differing in the amino acid composition of the two peptidolactone side chains¹). Binding to the DNA and intercalation into the polynucleic acid double strand has been shown as the main activity of actinomycin D containing identical peptidolactone moieties^{2~4}). However, few information is available about DNA-binding activities of the other naturally occurring representatives of the actinomycin family⁴).

In the course of our screening for new microbial metabolites we disclosed recently *Streptomyces* sp. HKI-0155 as the producer of an orange pigment which displayed moderate antibacterial activity against *Bacillus subtilis* ATCC 6633. Due to m/z 1295.3 ([M+Na]⁺) in the ESI-MS spectrum and database searches suggesting the novelty of the metabolite we started an isolation program for this compound. The evaporated ethyl acetate extract of 10 liters of a 96 hours culture of *Streptomyces* sp. HKI-0155 was subjected to column chromatography on silica gel 60 (0.1~0.063 mm, elution by a) *n*-hexane, b) CHCl₃/MeOH 9:1 v/v). A yellowish fraction was further purified by preparative HPLC on silica gel RP₁₈ (Spherisorb ODS-2, 25 mm×250 mm) using a gradient of water to 83%

Table 1. Physico-chemical properties of 1.

Appearance	Yellowish microcrystals
Chemical formula	$C_{61}H_{84}N_{12}O_{18}$
HRFAB-MS ($[M+Na]^+$):	m/z 1295.5894 (calcd.:
	1295.5924)
$[\alpha]_{\rm D}^{25}$ (in MeOH)	+226.0°
UV $(\lambda_{max}; nm in MeOH(\varepsilon))$	443 (24500)
IR v_{max} (cm ⁻¹ , in KBr)	1022, 1090, 1118, 1153,
	1194, 1265, 1315, 1344,
	1440, 1466, 1510, 1580,
	1654, 1738, 2965, 3310,
	3420
Rf on TLC (CHCl ₃ /MeOH $\vec{9}$: 1)	0.8
Rt (min) on analytical HPLC	
$(RP_{18}; 0.25 \times 250 \text{ cm}; \text{ gradient})$	
95% water/0.1% trifluoroacetic	
acid to 95% acetonitrile,	
$3 \sim 20$ minutes)	12.2

acetonitrile (2 minutes to 25 minutes) followed by an isocratic run with the latter eluent. 35 mg of 1 were thus obtained. The physico-chemical properties of 1 are shown in Table 1.

UV (λ_{max}) and IR spectroscopic data (Table 1) suggested the similarity of the chromophore of 1 with that of the actinomycins. The chemical formula C₆₁H₈₄N₁₂O₁₈ was readily inferred by HRESI-MS (m/z 1295.5894 $([M+Na]^+)$, calcd.: 1295.5924). FAB-MS displayed m/z1273.8 ($[M+H]^+$) and diagnostic fragments such as m/z762.8, 746.9, 451.9 and 435.8. The latter two diagnostic fragment ions were also observed in the daughter ion MS (CID-MS/MS) of m/z 1273 ([M+H]⁺). Corroborative mass spectrometric data were furnished by positive ion ESI-MSⁿ experiments using an ion-trap mass analyzer. Starting with m/z 1295.0 ([M+Na]⁺) the presence of N-methylvaline and sarcosine was shown by m/z 1182.5 ([M minus Nmethylvaline]⁺) and m/z 1093.7 ([M minus N-methylvaline, sarcosine and H_2O ⁺) in the MS² and MS³ experiments, respectively.

Conclusive evidence for the structure of 1 (Fig. 1) was furnished by 1D and 2D NMR spectroscopy (Table 1). The 13 C NMR spectrum of 1 displayed 12 amide carbonyls and an additional signal at 178.16 ppm attributable to C-3 of the phenoxazinone chromophore.

Abbreviations: L-Pro: L-proline; Sar: sarcosine; Meval: *N*-methy-L-valine; Meala: *N*-methyl-L-alanine; Mehypro: 3-hydroxy-5-methyl-L-proline; Thr: Lthreonine; Val: D-valine, Hythr: 4-hydroxy-L-threonine.

Moiety	Position	$\delta_{ m c}$	$\delta_{ ext{H}}$	Moiety	Position	$\delta_{ m c}$	$\delta_{ ext{ ext{ H}}}$
Phenoxazinone	C-1	97.5		Sar	C-1	167.1	
chromophore	C-2	147.7			C-2	51.3	3.93 d, br; 17.5
	$2-NH_2$		4.6 br				4.79 d, br; 17.5
	C-3	178.2			N-CH ₃	34.4	2.68 s
	C-4	112.5					
	C-4a	145.6	—	Meval	C-1	168.0	·
	C-5a	140.2	_		C-2	69.6	3.06 d; 6.1
	C-6	128.5	_		C-3	26.3	2.53 m
	C-7	129.7	7.44 d; 7.9		C-4	21.3	1.05 d; 7.0
	C-8	126.1	7.86 d; 7.9		C-5	18.9	0.75 d; 7.1
	C-9	127.8	_		N-CH ₃	38.1	2.85 s
	C-9a	130.3	·				
	C-10a	145.9	_	Ring B			
	C-11	14.7	2.48 s	Hythr	C-1	168.9	·
	C-12	7.6	2.12 s		C-2	54.0	4.41 m
	C-13	165.0	·		C-3	68.4	4.14 m
	C-14	171.1	_		C-4	65.9	4.40 dd; 4.27 dd
					NH		7.31 d; 7.7
Ring A					OH		5.20 d; 5.4
L-Thr	C-1	169.3	_				
	C-2	56.0	4.92 dd; 9.0, 1.5	D-Val	C-1	169.9	_
	C-3	71.8	5.2 m		C-2	57.2	4.24 dd; 8.1, 7.2
	C-4	16.6	1.34 d; 6.5		C-3	27.9	1.95 m
	NH	<u> </u>	8.85 d; 9.0		C-4	18.7	0.82 d; 7.1
					C-5	19.0	0.80 d; 7.2
D-Val	C-1	173.2			NH		7.58 d; 9.0
	C-2	57.8	3.30 dd; 8.3; 5.0				
	C-3	30.9	1.83 m	Mehypro	C-1	173.2	
	C-4	18.95	0.67 d; 7.5		C-2	65.3	5.91 d, br
	C-5	18.9	0.87 d; 7.5		C-3	73.8	3.43 m, br
	NH		8.23 d; 8.3		C-4	39.9	1.70 m; 2.49 m
					C-5	51.2	4.08 m
L-Pro	C-1	171.6			5-CH3	18.8	1.19 d; 6.1
	C-2	56.2	4.85 t, br		OH		5.19
	C-3	27.6	1.71 m; 2.15 m				
	C-4	24.1	1.83 m; 1.91 m	Sar	C-1	169.6	
	C-5	46.9	3.49 m; 3.85 m		C-2	50.2	3.25 d, br; 4.38 d, br
					N-CH ₃	37.9	3.22 s
				Meala	C-1	171.4	
					C-2	52.3	5.07 q
					C-3	14.2	1.22 d; 7.1
							·

Table 2. Assignment of ¹H- and ¹³C-NMR chemical shift data (in ppm) of **1** (in DMSO- d_6 ; coupling constants in Hz; concentration: 0.022 M).

Abbreviations: s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br: broad; for the abbreviations of the amino acids see the legend of Fig. 1.

The ¹H- and ¹³C-NMR signals of the chromophoric ring system were readily assigned on the basis of ¹H, ¹H-COSY, DEPT, HSQC and HMBC experiments whereby comparison of the measured ¹³C data with carbon chemical

shifts of other actinomycins was particularly helpful¹).

The assignment of the ¹H and ¹³C carbon signals of the two different peptidolactone moieties A and B (Fig. 1) was based on the observable COSY, TOCSY, NOESY and C, H

Fig. 2. Effect of actinomycin D (- \bullet -) and actinomycin HKI-0155 (- \blacksquare -) on sedimentation coefficient of supercoiled plasmid DNA from pBR322^{4,5)}.

long-range correlations. Thus the ¹H, ¹H couplings of the N-H protons with the neighboured C-H protons in the COSY spectrum and the C, H long-range and ²J and ³J couplings of the N-H and N-CH₃-protons, respectively, with the neighboured carbon atoms of the amino acids enabled the suggestion of carbonyl signals as part of a special amino acid (Table 2).

Acidic hydrolysis of 1, derivatization of the amino acids by Marfey's reagent⁵⁾ and HPLC analysis of the amino acid derivatives suggested the presence of D-valine, L-threonine, *N*-methyl-L-alanine, L-proline and sarcosine. By this way the configuration of 4-hydroxy-L-threonine⁸⁾, 5-methyl-3-hydroxy-L-proline⁹⁾ and *N*-methyl-L-valine was not assignable but it could be expected to be the same as was shown for other actinomycins of the Z-type^{8~10)}. The physico-chemical data thus suggest compound 1 as a new representative of the actinomycin family of antibiotics showing different amino acid composition in each of the two peptidolactone rings (*aniso*-actinomycin).

1 displays only a moderate antimicrobial activity against some Gram-positive bacteria such as *Bacillus subtilis* ATCC 6633 (MIC \gg 200 µg/ml). In contrast to actinomycin D the new actinomycin HKI-0155 did not intercalate into

the DNA. Fig. 2 displays that the sedimentation coefficient of supercoiled plasmid DNA undergoes a characteristic fall and rise with increasing actinomycin D concentration indicating the typical feature of an intercalation $process^{6,7)}$. In contrast, the compound 1 exhibited no similar change in the sedimentation profile. In accord with the missing DNAintercalating properties, more than 200 times higher concentration of 1 were needed in comparison to actinomycin D as to cause comparable inhibition of bacterial gyrase⁶⁾. Obviously the combination of an actinomycin-D-type peptidolactone (ring A) and a diminished variant containing two hydroxy amino acids (ring B) destabilizes the characteristic pseudo-C2symmetrical overall conformation of¹⁰⁾ as a prerequisite for DNA intercalation. The additional hydroxyl groups, spatially adjacent to the chromophore¹⁰, might also inhibit a correct intercalation by forming competing hydrogen bonds between 1 and the DNA chain.

H. Lackner^a Heike Hülsmann^b Stephan Heinze^b Hannelore Simon^c Horst Bär^c Christoph Zimmer^c Udo Gräfe^{b,*}

^a Institute of Organic Chemistry, Georg.August-University Göttingen,

Tamannstrasse 2, D-37077 Göttingen, Germany,

^bHans-Knöll-Institute of Natural Products Research,

- Beutenbergstrasse 11, D-07745 Jena, Germany
- [°] Institute of Molecular Biology, Friedrich-Schiller-Universit Jena, Winzerlaer Strasse 7, D-07745 Jena, Germany

(Received July 29, 1999)

References

- STEGLICH, W.; B. FUGMANN & S. LANG-FUGMANN: Natural Products. Römpp Chemielexikon. G. Thieme Verlag Stuttgart, Germany, 1997
- WARING, M. J. & C. BAILLY: DNA recognition by intercalators and hybrid molecules. J. Mol. Recognit. 7: 109~122, 1994
- 3) SEARCEY, M.; S. MCCLEAN, B. MADDEN, A. T. MCGOWN & L. P. G. WAKELIN: Synthesis, DNA-cleaving

properties and cytotoxicity of intercalating chelidamic acid derivatives. Anti-Cancer Drug Res. 13: 837~855, 1998

- CAVALIERI, P.; P. DESANTIS, S. MOROSETTI, M. SAVINO: A model compound of actinomycin. Conformation of dimethyl actinocinyl-bis(sarcosyl-L-valinate). Gazz. Chim. Ital. 108: 509~512, 1978
- SZOKAN, G.; G. MEZÖ & F. HUDECZ: Application of Marfey's reagent in racemization studies of amino acids and peptides. J. Chromatogr. 44: 115~122, 1998
- 6) SIMON, H.; B. WITTIG & C. ZIMMER: Effect of netropsin, distamycin A and chromomycin A₃ on the binding and cleavage reaction of DNA gyrase. FEBS Letters 353: 79~83, 1994
- 7) TRIEBEL, H.; H. BÄR, A. WALTER, G. BURCKHARDT & CH. ZIMMER: Modulation of DNA supercoiling by interaction with netropsin and other minor groove binders. J. Biomolec. Struct. Dyn. 11: 1085~1105, 1994
- KATZ, E.; K. T. MASON & A.D. MAUGER: The presence of α-amino-β,γ-dihydroxybutyric acid in hydrolysates of actinomycin. J. Antibiotics 27: 952~955, 1974
- 9) MAUGER, A. B.; O. A. STUART, E. KATZ & K. T. MASON: Synthesis and stereochemistry of 3-hydroxy-5-methylproline, a new naturally occurring imino acid. J. Org. Chem. 42: 1000~1005, 1977
- 10) SCHÄFER, M.; G. M. SHELDRICK, I. BAHNER & H. LACKNER: Crystal structures of actinomycin D and actinomycin Z_3 . Angew. Chem. Int. Ed. 37: 21381 \sim 2384, 1998